• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploration and analysis of On-Surface and In-Air handwriting attributes to improve dysgraphia disorder diagnosis in children based on machine learning methods

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Exploration and analysis of On-Surface and In-Air handwriting attributes to improve dysgraphia disorder diagnosis in children based on machine learning methods.pdf (3.688Mb)
    Date
    2023-05-31
    Author
    Jayakanth, Kunhoth
    Al Maadeed, Somaya
    Saleh, Moutaz
    Akbari, Younes
    Metadata
    Show full item record
    Abstract
    Dysgraphia is a type of learning disorder that affects children’s writing skills. Poor writing skills can obstruct students’ academic growth if it is undiagnosed and untreated properly in the early stages. The irregularity in the symptoms and varying levels of difficulty at each age level made the dysgraphia diagnosis task quite complex. This work focuses on developing machine learning-based automated methods to build the dysgraphia screening tool for children. The proposed work analyzes the various attributes of online handwritten data recorded by digitizing tablets during On-Surface (when the pen is on the tablet’s surface) and In-Air activity (when the pen is away from the tablet’s surface). The proposed work has considered feature extraction from the whole handwriting data in a combined manner instead of feature extraction from task-specific (word, letter, sentence, etc.) handwritten data separately to reduce the number of features. This approach has significantly reduced the number of features by about 85%. Extracted features are used to train and evaluate multiple machine learning classifiers such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random forest, and AdaBoost. Evaluation in a publicly available dataset indicates that the AdaBoost classifier achieved a classification accuracy of 80.8%, which is 1.3% more than the state-of-the-art method. Moreover, a deep analysis of different characteristics (kinematic, dynamic, temporal, spatial, etc.) of online handwriting is conducted to examine their significance in distinguishing normal and abnormal handwritten data. The analysis can help psychologists determine what attributes and methods should be considered for effective treatment.
    URI
    https://www.sciencedirect.com/science/article/pii/S1746809423001489
    DOI/handle
    http://dx.doi.org/10.1016/j.bspc.2023.104715
    http://hdl.handle.net/10576/49678
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video