• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fractional-order controllers for stick-slip vibration mitigation in oil well drill-strings

    Thumbnail
    View/Open
    derbal-et-al-2021-fractional-order-controllers-for-stick-slip-vibration-mitigation-in-oil-well-drill-strings.pdf (1.424Mb)
    Date
    2021-01-11
    Author
    Derbal, Massinissa
    Gharib, Mohamed
    Refaat, Shady S.
    Palazzolo, Alan
    Sassi, Sadok
    Metadata
    Show full item record
    Abstract
    Drillstring–borehole interaction can produce severely damaging vibrations. An example is stick–slip vibration, which negatively affects drilling performance, tool integrity and completion time, and costs. Attempts to mitigate stick–slip vibration typically use passive means and/or change the operation parameters, such as weight on bit and rotational speed. Automating the latter approach, by means of feedback control, holds the promise of quicker and more effective mitigation. The present work presents three separate fractional-order controllers for mitigating drillstring slip–stick vibrations. For the sake of illustration, the drillstring is represented by a torsional vibration lumped parameter model with four degrees of freedom, including parameter uncertainty. The robustness of these fractional-order controllers is compared with traditional proportional-integral-derivative controllers under variation of the weight on bit and the drill bit’s desired rotary speed. The results confirm the proposed controllers effectiveness and feasibility, with rapid time response and less overshoot than conventional proportional-integral-derivative controllers.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099353896&origin=inward
    DOI/handle
    http://dx.doi.org/10.1177/1461348420984040
    http://hdl.handle.net/10576/49880
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video