• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wave propagation analysis of porous functionally graded curved beams in the thermal environment

    Thumbnail
    Date
    2021
    Author
    Xu, Xinli
    Zhang, Chunwei
    Musharavati, Farayi
    Sebaey, Tamer A.
    Khan, Afrasyab
    Metadata
    Show full item record
    Abstract
    In the present paper, wave propagation behavior of porous temperature-dependent functionally graded curved beams within the thermal environment is analyzed for the first time. A recently-developed method is utilized which considers the reciprocal effect of mass density and Young's modulus in order to explore the influence of porosity. Three different types of temperature variation (uniform temperature change (UTC), linear temperature change (LTC), sinusoidal temperature change (STC)) are employed to study the effect of various thermal loads. Euler-Bernoulli beam theory, also known as classic beam theory is implemented in order to derive kinetic and kinematic relations, and then Hamilton's principle is used to obtain governing equations of porous functionally graded curved beams. The obtained governing equations are analytically solved. Eventually, the influences of various parameters such as wave number, porosity coefficient, various types of temperature change and power index are covered and indicated in a set of illustrations.
    DOI/handle
    http://dx.doi.org/10.12989/sem.2021.79.6.665
    http://hdl.handle.net/10576/50165
    Collections
    • Mechanical & Industrial Engineering [‎1465‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video