Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
المؤلف | Abualsaud, Khalid |
المؤلف | Mahmuddin, Massudi |
المؤلف | Saleh, Mohammad |
المؤلف | Mohamed, Amr |
تاريخ الإتاحة | 2016-11-20T07:41:55Z |
تاريخ النشر | 2015 |
اسم المنشور | The Scientific World Journal |
المعرّف | http://dx.doi.org/10.1155/2015/945689 |
الاقتباس | Khalid Abualsaud, Massudi Mahmuddin, Mohammad Saleh, and Amr Mohamed, “Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data,” The Scientific World Journal, vol. 2015, Article ID 945689, 15 pages, 2015. |
الرقم المعياري الدولي للكتاب | 2356-6140 |
الملخص | Brain status information is captured by physiological electroencephalogram (EEG) signals, which are extensively used to study different brain activities.This study investigates the use of a new ensemble classifier to detect an epileptic seizure from compressed and noisy EEG signals. This noise-aware signal combination (NSC) ensemble classifier combines four classification models based on their individual performance. The main objective of the proposed classifier is to enhance the classification accuracy in the presence of noisy and incomplete information while preserving a reasonable amount of complexity.The experimental results show the effectiveness of the NSC technique, which yields higher accuracies of 90% for noiseless data compared with 85%, 85.9%, and 89.5% in other experiments. The accuracy for the proposed method is 80% when SNR = 1dB, 84% when SNR = 5dB, and 88% when SNR = 10dB, while the compression ratio (CR) is 85.35% for all of the datasets mentioned. |
راعي المشروع | NPRP 7-684-1-127, from the Qatar National Research Fund, a member of Qatar Foundation. |
اللغة | en |
الناشر | Hindawi |
الموضوع | Electroencephalography/methods Epilepsy/physiopathology Humans |
النوع | Article |
رقم المجلد | 2015 |
ESSN | 1537-744X |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]