• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spreading of SARS-CoV-2 via heating, ventilation, and air conditioning systems-an overview of energy perspective and potential solutions

    Thumbnail
    Date
    2021
    Author
    Sleiti, Ahmad K.
    Ahmed, Samer F.
    Ghani, Saud A.
    Metadata
    Show full item record
    Abstract
    The role of heating, ventilation, and air conditioning systems (HVAC) in spreading SARSCoV-2 is a complex topic and has not been studied thoroughly. There are some existing strategies and technologies for health and high performance buildings; however, applications to other types of buildings come at large energy penalty: cost; design, regulations and standards changes, and varied public perception. In the present work, different factors and strategies are reviewed and discussed and suggested mitigations and solutions are provided including the required air flowrates with the presence of infectors with and without mask and disinfection techniques including ultraviolet (UV) light. Experimental and numerical research in open literature suggests that the airborne transmission of SARS-CoV-2 is sufficiently likely. However, in situ detailed experimental studies are still needed to understand the different scenarios of the virus spread. Displacement ventilation, underfloor air distribution, chilled beams, radiant ceiling panels, and laminar flow systems have varied effectiveness. High-efficiency particulate arrestance (HEPA) filters and UV light can clean viruses but at high energy cost. Suggested solutions to reduce the infection probability include recommended levels of ventilation and a combination of virus sampling technologies including cyclones, liquid impinger, filters, electrostatic precipitators, and water-based condensation.
    DOI/handle
    http://dx.doi.org/10.1115/1.4048943
    http://hdl.handle.net/10576/50237
    Collections
    • COVID-19 Research [‎849‎ items ]
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video