عرض بسيط للتسجيلة

المؤلفCheheb, Ismahane
المؤلفAl-Maadeed, Noor
المؤلفBouridane, Ahmed
المؤلفBeghdadi, Azeddine
المؤلفJiang, Richard
تاريخ الإتاحة2023-12-07T07:32:04Z
تاريخ النشر2021
اسم المنشورApplied Sciences (Switzerland)
المصدرScopus
الرقم المعياري الدولي للكتاب20763417
معرّف المصادر الموحدhttp://dx.doi.org/10.3390/app11146303
معرّف المصادر الموحدhttp://hdl.handle.net/10576/50257
الملخصWhile there has been a massive increase in research into face recognition, it remains a challenging problem due to conditions present in real life. This paper focuses on the inherently present issue of partial occlusion distortions in real face recognition applications. We propose an approach to tackle this problem. First, face images are divided into multiple patches before local descriptors of Local Binary Patterns and Histograms of Oriented Gradients are applied on each patch. Next, the resulting histograms are concatenated, and their dimensionality is then reduced using Kernel Principle Component Analysis. Once completed, patches are randomly selected using the concept of random sampling to finally construct several sub-Support Vector Machine classifiers. The results obtained from these sub-classifiers are combined to generate the final recognition outcome. Experimental results based on the AR face database and the Extended Yale B database show the effectiveness of our proposed technique.
راعي المشروعFunding: This research was funded by NPRP grant # NPR 8-140-2-065 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
اللغةen
الناشرMDPI AG
الموضوعFace recognition
Random sampling
SVM classification
العنوانMulti-descriptor random sampling for patch-based face recognition
النوعArticle
رقم العدد14
رقم المجلد11
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة