• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulated annealing with auxiliary knowledge for process planning optimization in reconfigurable manufacturing

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0736584511000950-main.pdf (558.9Kb)
    Date
    2012-04
    Author
    Musharavati, F.
    Hamouda, A.M.S.
    Metadata
    Show full item record
    Abstract
    In this paper, three simulated annealing based algorithms that exploit auxiliary knowledge in different ways are devised and employed to handle a manufacturing process planning problem for reconfigurable manufacturing. These algorithms are configured based on a generic combination of the simulated annealing technique with; (a) heuristic knowledge, and (b) metaknowledge. Capabilities of the implemented algorithms are tested and their performances compared against a basic simulated annealing algorithm. Computational and optimization performances of the implemented algorithms are investigated and analyzed for two problem sizes. Each problem size consists of five different forms of a manufacturing process planning problem. The five forms are differentiated by five alternative objective functions. Experimental results show that the implemented simulated annealing algorithms are able to converge to good solutions in reasonable time. A computational analysis indicates that significant improvements towards a better optimal solution can be gained by implementing simulated annealing based algorithms that are supported by auxiliary knowledge.
    URI
    http://www.sciencedirect.com/science/article/pii/S0736584511000950
    DOI/handle
    http://dx.doi.org/10.1016/j.rcim.2011.07.003
    http://hdl.handle.net/10576/5066
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video