Mix and match: Collaborative expert-crowd judging for building test collections accurately and affordably
المؤلف | Kutlu, Mucahid |
المؤلف | McDonnell, Tyler |
المؤلف | Sheshadri, Aashish |
المؤلف | Elsayed, Tamer |
المؤلف | Lease, Matthew |
تاريخ الإتاحة | 2024-02-21T08:22:11Z |
تاريخ النشر | 2018-08 |
اسم المنشور | CEUR Workshop Proceedings |
الاقتباس | Goyal, T., McDonnell, T., Kutlu, M., Elsayed, T., & Lease, M. (2018, June). Your behavior signals your reliability: Modeling crowd behavioral traces to ensure quality relevance annotations. In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing (Vol. 6, pp. 41-49). |
الرقم المعياري الدولي للكتاب | 1613-0073 |
الملخص | Crowdsourcing offers an affordable and scalable means to collect relevance judgments for information retrieval test collections. However, crowd assessors may showhigher variance in judgment quality than trusted assessors. In this paper, we investigate how to effectively utilize both groups of assessors in partnership. We study how agreement in judging is correlated with three factors: relevance category, document rankings, and topical variance. Based on this, we then propose two collaborative judging methods in which some document-topic pairs are assigned to in-house assessors for relevance judging while the rest are assessed by crowd workers. Results on two TREC collections show encouraging results when we distribute work intelligently between our two groups of assessors. |
راعي المشروع | This work was made possible by NPRP grant# NPRP 7-1313-1-245 from the Qatar National Research Fund (a member of Qatar Foundation). |
اللغة | en |
الناشر | CEUR-WS |
الموضوع | Crowdsourcing Evaluation Information retrieval Relevance |
النوع | Conference Paper |
الصفحات | 41-49 |
رقم المجلد | 2167 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]