عرض بسيط للتسجيلة

المؤلفNasser, Mohamed
المؤلفRainio, Oona
المؤلفRasila, Antti
المؤلفVuorinen, Matti
المؤلفWallace, Terry
المؤلفYu, Hang
المؤلفZhang, Xiaohui
تاريخ الإتاحة2024-03-12T09:55:09Z
تاريخ النشر2022-09-13
اسم المنشورAdvances in Computational Mathematics
المعرّفhttp://dx.doi.org/10.1007/s10444-022-09975-x
الاقتباسNasser, M., Rainio, O., Rasila, A., Vuorinen, M., Wallace, T., Yu, H., & Zhang, X. (2022). Polycircular domains, numerical conformal mappings, and moduli of quadrilaterals. Advances in Computational Mathematics, 48(5), 58.
الرقم المعياري الدولي للكتاب1019-7168
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85138472932&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/52956
الملخصWe study numerical conformal mappings of planar Jordan domains with boundaries consisting of finitely many circular arcs, also called polycircular domains, and compute the moduli of quadrilaterals for these domains. Experimental error estimates are provided and, when possible, comparison to exact values or other methods are given. We also analyze the rate of convergence as a function of the number of degrees of freedom. The main ingredients of the computation are boundary integral equations combined with the fast multipole method.
راعي المشروعOpen Access funding provided by University of Turku (UTU) including Turku University Central Hospital. This work was also funded by: - the University of Turku Graduate School UTUGS. A. - National Natural Science Foundation of China (No. 11971124). - Natural Science Foundation of Guangdong Province (No. 2021A1515010326). - the Natural Science Foundation of Zhejiang Province (LY22A010004).
اللغةen
الناشرSpringer Nature
الموضوعBoundary integral equations
Condenser capacity
Numerical conformal mappings
العنوانPolycircular domains, numerical conformal mappings, and moduli of quadrilaterals
النوعArticle
رقم العدد5
رقم المجلد48
ESSN1572-9044
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة