Rupture of an industrial gfrp composite mitered elbow pipe
Abstract
This paper examines the immature rupture of glass fiber reinforced plastic composite (GFRP) mitered elbow pipes. The GFRP composite mitered elbow pipe’s lifespan was twenty-five years; however, the pipes in question experienced immature failures, resulting in the reduction of their lifetimes to seven, nine, and ten years, respectively. The GFRP cooling water mitered elbow pipe’s service conditions operate at a pressure of up to 7 bar and temperatures between 15–36 °C. The root cause of failure was determined using visual inspection, analytical, microstructural, mechanical characterizations, and chemical analysis. The initial visualization inspection revealed an improper joint between the composite overwrapped and the straight pipe sections. Mechanical properties along the axial, hoop and 45° from the axial direction were obtained. The results from the analytical analysis indicated that the elbow might withstand the operating pressure depending on the quality factor, which was confirmed to be low due to the elbow joint’s improper fabrication process. As evidence of this, the numerical analyses’ results indicated that the safety factor in withstanding the operating pressure of 5 bar is dropped down in the radial region where the thickness is reduced to simulate the failure zone. This study’s findings recommend that thickness of less than 15 mm be reinforced using overwrapped composites. It is recommended for future installations that the fabrication process be appropriately monitored and controlled and avoids using 45°/−45° fiber orientation and multiple layers of chopped strand mat glass fiber.
Collections
- Mechanical & Industrial Engineering [1396 items ]