عرض بسيط للتسجيلة

المؤلفNg, James
المؤلفAksikas, Ilyasse
المؤلفDubljevic, Stevan
تاريخ الإتاحة2024-03-18T06:08:42Z
تاريخ النشر2013
اسم المنشورInternational Journal of Control
المصدرScopus
الرقم المعياري الدولي للكتاب207179
معرّف المصادر الموحدhttp://dx.doi.org/10.1080/00207179.2013.786187
معرّف المصادر الموحدhttp://hdl.handle.net/10576/53129
الملخصThis paper considers the optimal control problem for a class of convection-diffusion-reaction systems modelled by partial differential equations (PDEs) defined on time-varying spatial domains. The class of PDEs is characterised by the presence of a time-dependent convective-transport term which is associated with the time evolution of the spatial domain boundary. The functional analytic description of the PDE yields the representation of the initial and boundary value problem as a nonautonomous parabolic evolution equation on an appropriately defined infinite-dimensional function space. The properties of the time-varying evolution operator to guarantee existence and well posedness of the initial and boundary value problem are demonstrated which serves as the basis for the optimal control problem synthesis. An industrial application of the crystal temperature regulation problem for the Czochralski crystal growth process is considered and numerical simulation results are provided.
اللغةen
الناشرTaylor and Francis Ltd.
الموضوعCzochralski crystal growth
nonautonomous systems
parabolic partial differential equations
process control applications
time-varying domain
العنوانControl of parabolic PDEs with time-varying spatial domain: Czochralski crystal growth process
النوعArticle
الصفحات1467-1478
رقم العدد9
رقم المجلد86
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة