• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Routing and flow rate assignment using multi-objective optimization in wireless sensor networks

    Thumbnail
    Date
    2015
    Author
    Elsersy, Mohamed
    Ahmed, Mohamed Hossam
    Abderrazak, Abdaoui
    Elfouly, Tarek Mohamed
    Metadata
    Show full item record
    Abstract
    Wireless sensor networks (WSNs) have shown to be an efficient solution for physical parameters monitoring and activity detection. WSNs are usually designed using single optimization by optimizing one objective function such as energy consumption taking some constraints into consideration. In multi-objective optimization (MOPT) multiple and often conflicting objectives need to be optimized while satisfying some constraints. This paper proposes MOPT-based routing and flow rate assignment methodologies for WSNs. The first methodology employs Karush-Kuhn-Tucker (KKT) conditions to find the optimal solution, while the second one is based on genetic algorithms (GA). A new formulation is introduced jointly minimize the energy and the delay. Performance metrics such as the average end-to-end delay and energy consumption are evaluated and compared with those of previous work, namely the hybrid geographical routing (HGR) algorithm. The proposed work helps network designers to address design procedures efficiently and increase the flexibility in the energy delay tradeoff for communications in WSNs.
    DOI/handle
    http://dx.doi.org/10.1109/WCNC.2015.7127668
    http://hdl.handle.net/10576/53360
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video