• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Agricultural Research Station
  • Research of Agricultural Research Station
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Agricultural Research Station
  • Research of Agricultural Research Station
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Green synthesized zinc oxide nanoparticles for removal of carbamazepine in water and soil systems

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1383586623028964-main.pdf (5.891Mb)
    Date
    2024-04-14
    Author
    Sajid, Mehmood
    Ahmed, Waqas
    Rizwan, Muhammad
    Bundschuh, Jochen
    Elnahal, Ahmed S.M.
    Li, Weidong
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    During the COVID-19 pandemic, there was a significant increase in pharmaceutical releases (4 %), which created a pressing global need for solutions. In this study, we explored the use of zinc oxide nanoparticles (GS-ZnONPs) derived from neem (Azadirachta indica) leaves for separating antiepileptic drug carbamazepine (CBZ) from wastewater. CBZ is a major emerging pollutant in wastewater that can be reused for various purposes, including food production and drinking water. The study found that the GS-ZnONPs were effective in removing CBZ from water, with an adsorption capacity of 27.55 mg g−1 at room temperature. The GS-ZnONPs, under optimal conditions of pH 5.0, 100 mg of adsorbent, and 12 mg L−1 of CBZ at 25 °C ± 2 °C, demonstrated a remarkable removal efficiency, successfully eliminating 92.89 % of CBZ from water. Additionally, the study found that CBZ binds strongly to GS-ZnONPs, making them effective for removing CBZ from soil as well. The results suggest that GS-ZnONPs synthesized from neem leaves could be a low-cost and sustainable solution for removing emerging pollutants from wastewater and soil. Future studies could investigate the adsorption mechanisms, functional groups, respective pH ranges, and reuse of these low-cost adsorbents to further optimize their efficiency in tackling emerging pollutants.
    URI
    https://www.sciencedirect.com/science/article/pii/S1383586623028964
    DOI/handle
    http://dx.doi.org/10.1016/j.seppur.2023.125988
    http://hdl.handle.net/10576/54530
    Collections
    • Research of Agricultural Research Station [‎62‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video