Evaluation of Loss Functions for Segmentation of Corneal Nerves
المؤلف | Salahuddin, Tooba |
المؤلف | Qidwai, Uvais |
تاريخ الإتاحة | 2024-05-07T05:39:56Z |
تاريخ النشر | 2021 |
اسم المنشور | Proceedings - 2020 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2020 |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/IECBES48179.2021.9398843 |
الملخص | Corneal confocal microscopy (CCM) has been advocated as a non-invasive technique for objective diagnosis of very early neuropathy in patients by scanning the corneal subbasal nerve plexus. The obtained images provide a range of research opportunities to be explored. Current research revolves around providing automated solutions for nerve segmentation in CCM images. In this paper, we address the problem of low sensitivity of nerves in automatic segmentation caused by imbalanced pixel distribution in the CCM images. We evaluate three loss functions with varying parameters in the deep learning network, U-Net, on the images and discuss the results. We have observed that the optimal training time and convergence time for the Tversky loss function is better than the binary cross entropy and dice loss functions. This helps in getting better results faster, implying a quicker diagnosis. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | corneal confocal microscopy deep learning image segmentation medical image analysis neuropathy |
النوع | Conference Paper |
الصفحات | 533-537 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]
-
الذكاء المعلوماتي [93 items ]