• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On critical point avoidance among mobile terminals in healthcare monitoring applications: Saving lives through reliable communication software

    Thumbnail
    Date
    2012
    Author
    Chaudhry, Junaid Ahsenali
    Qidwai, Uvais Ahmed
    Metadata
    Show full item record
    Abstract
    The advances in Microelectromechanical systems (MEMS), battery life, low powered communication standards, more capable processing units, and hybrid communication have cemented the use of mobile Wireless Body Area Networks (WBAN) in medical informatics. Although the MEMS were used in medical informatics solutions but they were highly localized, rigged, non-cooperative, and particularly non extendable. The interconnectivity of various network interfaces is the main driving force on the modern technology boom. The morphological features of mobile devices and their use in our daily lives create an opportunity to connect medical informatics systems with the main stream. It promise unobtrusive ambulatory health monitoring for a long period of time and provide real-time updates of the patient's status to the physician. When integrated with the WBAN, the mobile devices play the role of localized data diffusion, classification, and broadcast center. In this paper, the criticality of this 'single point of failure' is discussed. Often the untapped flow of data to the mobile device can lead to crashing of the network. A computational model is devised in order to pre estimate the device resource availability matrix and data flow management without creating the denial of service. The speed mismatch due to resource binding violation on the part of the hand held device can be reported and capped before the data loss heeds un noticed. The techniques proposed are analyzed and tested on a test bed, specifically designed for monitoring remote patient vitals. The results obtained show marked improvement from the methods proposed in the contemporary systems.
    DOI/handle
    http://dx.doi.org/10.1109/ICOS.2012.6417658
    http://hdl.handle.net/10576/54693
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video