• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Marine Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Marine Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Associated effects of storage and mechanical pre-treatments of microalgae biomass on biomethane yields in anaerobic digestion

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016-10-01
    Author
    Gruber-Brunhumer, M.R.
    Jerney, J.
    Zohar, E.
    Nussbaumer, M.
    Hieger, C.
    Bromberger, P.
    Bochmann, G.
    Jirsa, F.
    Schagerl, M.
    Obbard, J.P.
    Fuchs, W.
    Drosg, B.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The pre-treatment of microalgae cell walls is known to be a key factor to enhance methane (CH4) yields during anaerobic digestion. This study investigated the combined effects of two different biomass storage methods and physical pre-treatments on the anaerobic digestion for three different microalgae species. Acutodesmus obliquus, Chlorella vulgaris and Chlorella emersonii were cultivated in 80 L sleevebag photobioreactors (batch mode), and then subjected to different storage (cooling and freezing) and pre-treatment methods prior to anaerobic digestion using the biochemical methane potential (BMP) test. A. obliquus was selected to evaluate pre-treatment methods for further experimentation. Significantly higher CH4 yields of cooled (4 °C) A. obliquus biomass were achieved through ultrasonication (+53% CH4) and wet-milling (+51% CH4). These methods were then applied in follow-up experiments to cooled (4 °C) biomass of C. emersonii and A. obliquus. Ultrasonication again led to significantly higher CH4 yields for A. obliquus biomass (323 dm3 kg−1 CH4 yield calculated at standard gas conditions of 273 K, and 101.5 kPa per unit volatile solids, +41% CH4), and C. emersonii biomass (308 dm3 kg−1; +35% CH4). In a third experiment series, frozen A. obliquus and C. vulgaris biomass were thawed prior to pre-treatment and BMP-testing. Among all BMP tests, the highest CH4 yields were achieved with untreated, freeze-thawed C. vulgaris biomass (406 dm3 kg−1); pre-treatment did not enhance CH4 yields for C. vulgaris, but for A. obliquus (ultrasonication +20%). Pre-treatment was more effective for cooled than freeze-thawed microalgal biomass and combined effects acted strain dependently.
    URI
    http://www.sciencedirect.com/science/article/pii/S0961953416302483
    DOI/handle
    http://dx.doi.org/10.1016/j.biombioe.2016.07.013
    http://hdl.handle.net/10576/5514
    Collections
    • Marine Science Cluster [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video