• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gas turbine failure classification using acoustic emissions with wavelet analysis and deep learning

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0957417423011867-main.pdf (9.643Mb)
    Date
    2023
    Author
    Nashed, M.S.
    Renno, J.
    Mohamed, M.S.
    Reuben, R.L.
    Metadata
    Show full item record
    Abstract
    Compared to vibration monitoring, acoustic emission (AE) monitoring in gas turbines is highly sensitive to changes that do not involve whole-body motion, such as wear, rubbing, and fluid-induced faults. AE signals captured by suitably mounted sensors can potentially provide early indications of abnormal turbine operation before such abnormalities manifest in structural vibration or emitted airborne noise. However, developing an online fault detection system requires extensive real-time data treatment to extract appropriate features and indicators from raw AE records. To build such a system for industrial turbines, researchers need to understand the AE-generating mechanisms associated with turbine operation and the sources of background noise. In this study, we aim to develop such an understanding using a small-scale turbine whose operational conditions can be modified safely to reflect both normal and faulty conditions. Our signal processing approach involves first extracting a time-series envelope using an averaging time selected to enhance major features and eliminate irrelevant noise. We then generate time-frequency features using a continuous wavelet transform, which are used to train a deep convolutional neural network to classify gas turbine conditions. The resulting model demonstrates high accuracy in classifying two normal running conditions and two faulty conditions at various turbine speeds. Overall, the proposed methodology offers a powerful tool for gas turbine condition monitoring, and we make all associated data available in open-source format to facilitate further research in this field.4
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2023.120684
    http://hdl.handle.net/10576/55696
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video