Development of highly active and coke-resilient Ni-based catalysts for low-temperature steam reformation of methane
Author | Sardar, Ali |
Author | Gamal, Ahmed |
Author | Khader, Mahmoud M. |
Available date | 2024-06-05T06:08:45Z |
Publication Date | 2023-01-13 |
Publication Name | Catalysis Communications |
Identifier | http://dx.doi.org/10.1016/j.catcom.2023.106605 |
Citation | Ali, S., Gamal, A., & Khader, M. M. (2023). Development of highly active and coke-resilient Ni-based catalysts for low-temperature steam reformation of methane. Catalysis Communications, 175, 106605. |
ISSN | 1566-7367 |
Abstract | In this work, we report on the development of highly active and stable catalysts for low temperature steam reformation of methane. The Ni-based catalysts supported on alumina were synthesized by the single step solution combustion synthesis (SCS) method. A combination of various surface and bulk sensitive analytical techniques such as XRD, cyclic TPDRO, XPS and HRTEM-SAED was utilized for detailed characterization of the catalysts. The catalyst 5NC synthesized by the SCS method exhibited superior activity and excellent stability for steam reformation of methane during the investigated period on stream for around 200 h. The light-off for methane conversion over the 5NC catalyst started at a reaction temperature of 350 °C whereas for the 5NP catalyst no activity below 600 °C was observed. Moreover, full methane conversion over the 5NC catalyst was achieved at 700 °C. Under similar conditions at reaction temperature of 700 °C, the methane decomposition rates over the 5NC catalyst was around 20 times higher than that of the 5NP catalyst. The exceptional high performance of the 5NC catalyst was attributed to the presence of surface defects, generation of nickel aluminates (NiAl2O4) nano-crystallites, uniform distribution and smaller metal oxide particle size. |
Sponsor | This paper was made possible by a NPRP Grant # 6-290-1-059 From the Qatar National Research Fund (a member of Qatar Foundation). |
Language | en |
Publisher | Elsevier |
Subject | Ni nanoparticles NiAl2O4 nanocrystallites Solution combustion synthesis Low temperature methane steam reforming |
Type | Article |
Volume Number | 175 |
Open Access user License | http://creativecommons.org/licenses/by/4.0/ |
Check access options
Files in this item
This item appears in the following Collection(s)
-
GPC Research [494 items ]