• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    GAN-Based Approach for Diabetic Retinopathy Retinal Vasculature Segmentation

    Thumbnail
    View/Open
    bioengineering-11-00004.pdf (4.030Mb)
    Date
    2023-12-21
    Author
    Sebastian, Anila
    Elharrouss, Omar
    Al-Maadeed, Somaya
    Almaadeed, Noor
    Metadata
    Show full item record
    Abstract
    Most diabetes patients develop a condition known as diabetic retinopathy after having diabetes for a prolonged period. Due to this ailment, damaged blood vessels may occur behind the retina, which can even progress to a stage of losing vision. Hence, doctors advise diabetes patients to screen their retinas regularly. Examining the fundus for this requires a long time and there are few ophthalmologists available to check the ever-increasing number of diabetes patients. To address this issue, several computer-aided automated systems are being developed with the help of many techniques like deep learning. Extracting the retinal vasculature is a significant step that aids in developing such systems. This paper presents a GAN-based model to perform retinal vasculature segmentation. The model achieves good results on the ARIA, DRIVE, and HRF datasets.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85183163499&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/bioengineering11010004
    http://hdl.handle.net/10576/55863
    Collections
    • Computer Science & Engineering [‎2491‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video