عرض بسيط للتسجيلة

المؤلفTang, Mingjie
المؤلفTahboub, Ruby Y.
المؤلفAref, Walid G.
المؤلفAtallah, Mikhail J.
المؤلفMalluhi, Qutaibah M.
المؤلفOuzzani, Mourad
المؤلفSilva, Yasin N.
تاريخ الإتاحة2024-07-17T07:14:46Z
تاريخ النشر2016
اسم المنشور2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ICDE.2016.7498368
معرّف المصادر الموحدhttp://hdl.handle.net/10576/56757
الملخصThe SQL group-by operator plays an important role in summarizing and aggregating large datasets in a data analytics stack. The Similarity SQL-based Group-By operator (SGB, for short) extends the semantics of the standard SQL Group-by by grouping data with similar but not necessarily equal values. While existing similarity-based grouping operators efficiently realize these approximate semantics, they primarily focus on one-dimensional attributes and treat multi-dimensional attributes independently. However, correlated attributes, such as in spatial data, are processed independently, and hence, groups in the multi-dimensional space are not detected properly. To address this problem, we introduce two new SGB operators for multi-dimensional data. The first operator is the clique (or distance-to-all) SGB, where all the tuples in a group are within some distance from each other. The second operator is the distance-to-any SGB, where a tuple belongs to a group if the tuple is within some distance from any other tuple in the group. Since a tuple may satisfy the membership criterion of multiple groups, we introduce three different semantics to deal with such a case: (i) eliminate the tuple, (ii) put the tuple in any one group, and (iii) create a new group for this tuple. We implement and test the new SGB operators and their algorithms inside PostgreSQL. The overhead introduced by these operators proves to be minimal and the execution times are comparable to those of the standard Group-by. The experimental study, based on TPC-H and a social check-in data, demonstrates that the proposed algorithms can achieve up to three orders of magnitude enhancement in performance over baseline methods developed to solve the same problem.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعEngineering
Industrial engineering
Baseline methods
Multi dimensional
Multi-dimensional space
Multidimensional data
Relational data
Similarity group byes
Standard groups
Three orders of magnitude
Semantics
العنوانSimilarity Group-By operators for multi-dimensional relational data
النوعConference Paper
الصفحات1448-1449
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة