عرض بسيط للتسجيلة

المؤلفZhang, Fan
المؤلفMalluhi, Qutaibah. M.
المؤلفElsyed, Tamer M.
تاريخ الإتاحة2024-07-17T07:14:47Z
تاريخ النشر2013
اسم المنشورProceedings of the International Conference on Parallel Processing
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ICPP.2013.134
الرقم المعياري الدولي للكتاب1903918
معرّف المصادر الموحدhttp://hdl.handle.net/10576/56760
الملخصThe rapid growth of large-data processing has brought in the MapReduce programming model as a widely accepted solution. However, MapReduce limits itself to a onemap- To-one-reduce framework. Meanwhile, it lacks built-in support and optimization when the input datasets are shared among concurrent applications and/or jobs. The performance might be improved when the shared and frequently accessed data is read from local instead of distributed file system. To enhance the performance of big data applications, this paper presents Concurrent MapReduce, a new programming model built on top of MapReduce that deals with large amount of shared data items. Concurrent MapReduce provides support for processing heterogeneous sources of input datasets and offers optimization when the datasets are partially or fully shared. Experimental evaluation has shown an execution runtime speedup of 4X compared to traditional nonconcurrent MapReduce implementation with a manageable time overhead.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعConcurrency
MapReduce
Programming model
Shared input data
العنوانConMR: Concurrent MapReduce programming model for large scale shared-Data applications
النوعConference Paper
الصفحات671-679
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة