Anonymizing transactional datasets
| المؤلف | AL Bouna, Becharaa |
| المؤلف | Clifton, Chrisc |
| المؤلف | Malluhi, Qutaibah |
| تاريخ الإتاحة | 2024-07-17T07:14:48Z |
| تاريخ النشر | 2015 |
| اسم المنشور | Journal of Computer Security |
| المصدر | Scopus |
| المعرّف | http://dx.doi.org/10.3233/JCS-140517 |
| الرقم المعياري الدولي للكتاب | 0926227X |
| الملخص | In this paper, we study the privacy breach caused by unsafe correlations in transactional data where individuals have multiple tuples in a dataset. We provide two safety constraints to guarantee safe correlation of the data: (1) the safe grouping constraint to ensure that quasi-identifier and sensitive partitions are bounded by l-diversity and (2) the schema decomposition constraint to eliminate non-arbitrary correlations between non-sensitive and sensitive values to protect privacy and at the same time increase the aggregate analysis. In our technique, values are grouped together in unique partitions that enforce l-diversity at the level of individuals. We also propose an association preserving technique to increase the ability to learn/analyze from the anonymized data. To evaluate our approach, we conduct a set of experiments to determine the privacy breach and investigate the anonymization cost of safe grouping and preserving associations. |
| اللغة | en |
| الناشر | IOS Press |
| الموضوع | data anonymization Data privacy transactional data |
| النوع | Article |
| الصفحات | 89-106 |
| رقم العدد | 1 |
| رقم المجلد | 23 |
الملفات في هذه التسجيلة
| الملفات | الحجم | الصيغة | العرض |
|---|---|---|---|
|
لا توجد ملفات لها صلة بهذه التسجيلة. |
|||
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2489 items ]
-
الذكاء المعلوماتي [100 items ]

