Association rule mining on fragmented database
المؤلف | Hamzaoui, Amel |
المؤلف | Malluhi, Qutaibah |
المؤلف | Clifton, Chris |
المؤلف | Riley, Ryan |
تاريخ الإتاحة | 2024-07-17T07:14:51Z |
تاريخ النشر | 2015 |
اسم المنشور | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1007/978-3-319-17016-9_23 |
الرقم المعياري الدولي للكتاب | 3029743 |
الملخص | Anonymization methods are an important tool to protect privacy. The goal is to release data while preventing individuals from being identified. Most approaches generalize data, reducing the level of detail so that many individuals appear the same. An alternate class of methods, including anatomy, fragmentation, and slicing, preserves detail by generalizing only the link between identifying and sensitive data. We investigate learning association rules on such a database. Association rule mining on a generalized database is challenging, as specific values are replaced with generalizations, eliminating interesting fine-grained correlations. We instead learn association rules from a fragmented database, preserving fine-grained values. Only rules involving both identifying and sensitive information are affected; we demonstrate the efficacy of learning in such environment. |
راعي المشروع | This publication was made possible by NPRP grant #09-256-1-046 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. |
اللغة | en |
الناشر | Springer |
الموضوع | Anonymity Association rule mining Data privacy Database Fragmentation |
النوع | Conference Paper |
الصفحات | 335-342 |
رقم المجلد | 8872 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]