عرض بسيط للتسجيلة

المؤلفEyvazian, Arameh
المؤلفZhang, Chunwei
المؤلفMusharavati, Farayi
المؤلفKhan, Afrasyab
المؤلفMohamed, Abdeliazim Mustafa
تاريخ الإتاحة2024-07-21T06:24:21Z
تاريخ النشر2021
اسم المنشورAdvances in Nano Research
المصدرScopus
المعرّفhttp://dx.doi.org/10.12989/anr.2021.10.3.271
الرقم المعياري الدولي للكتاب2287237X
معرّف المصادر الموحدhttp://hdl.handle.net/10576/56857
الملخصThe present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.
راعي المشروعThe research is financially supported by the first-class discipline project funded by the Education Department of Shandong Province and the Taishan Scholar Priority Discipline Talent Group program funded by the Government of Shandong Province.
اللغةen
الناشرTechno-Press
الموضوعbi-Helmholtz nonlocal strain gradient theory
homogeneous materials
thickness stretching effect
wave propagation
العنوانElastic wave phenomenon of nanobeams including thickness stretching effect
النوعArticle
الصفحات271-280
رقم العدد3
رقم المجلد10
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة