Show simple item record

AuthorMuhammad, Noor
AuthorZaman, F. D.
AuthorMustafa, M. T.
Available date2024-07-31T07:37:39Z
Publication Date2022-05-19
Publication NameEuropean Physical Journal: Special Topics
Identifierhttp://dx.doi.org/10.1140/epjs/s11734-022-00606-6
CitationMuhammad, N., Zaman, F. D., & Mustafa, M. T. (2022). OpenFOAM for computational combustion dynamics. The European Physical Journal Special Topics, 231(13), 2821-2835.
ISSN1951-6355
URIhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85130292050&origin=inward
URIhttp://hdl.handle.net/10576/57317
AbstractIn computational fluid dynamics (CFD), the mathematical description of a physical phenomenon that involves fluid flow, combustion, and chemical reaction is combined with a numerical solution of the problem via the use of a computer process. Computational fluid dynamics has emerged as a critical tool for comprehending and forecasting the behavior of reacting flows, which are fundamentally complicated systems involving the intricate interplay of chemical kinetics and fluid mechanics. Among the numerous open source CFD packages, the widely used C++ finite volume simulation toolbox OpenFOAM (Open-Source Field Operation and Manipulation) has a number of advantages, including an object-oriented framework, the ease with which multiphysics modules can be added, and its free availability. However, numerous shortcomings have been identified regarding its application to chemically reacting flows, most notably incomplete splitting schemes, inadequate ordinary differential equation (ODE) solvers for stiff chemistry, and oversimplified mixture transients. This article focuses on the combustion flow in an intake manifold. A sample intake manifold consists of two inlets and one outlet. The finite volume method is used for computing the mathematical modeling developed for combustion. The focus of the attention will be the demonstration of the structure of the flame. The energy deposition and pressure near the outlet are higher. The results are compared and found a good agreement between OpenFOAM and DUNE (Distributed and Unified Numerics Environment) numerics.
Languageen
PublisherSpringer Nature
SubjectOpenFOAM
computational fluid dynamics (CFD)
TitleOpenFOAM for computational combustion dynamics
TypeArticle
Pagination2821-2835
Issue Number13-14
Volume Number231
ESSN1951-6401
dc.accessType Full Text


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record