An alternative proof of Lie’s linearization theorem using a new λ-symmetry criterion
المؤلف | Ahmad Y., Al-Dweik |
المؤلف | Mustafa, M.T. |
المؤلف | Mara’Beh, Raed A. |
المؤلف | Mahomed, F.M. |
تاريخ الإتاحة | 2024-07-31T11:05:29Z |
تاريخ النشر | 2015-02-15 |
اسم المنشور | Communications in Nonlinear Science and Numerical Simulation |
المعرّف | http://dx.doi.org/10.1016/j.cnsns.2015.01.017 |
الاقتباس | Al-Dweik, A. Y., Mustafa, M. T., Mara’Beh, R. A., & Mahomed, F. M. (2015). An alternative proof of Lie’s linearization theorem using a new λ-symmetry criterion. Communications in Nonlinear Science and Numerical Simulation, 26(1-3), 45-51. |
الرقم المعياري الدولي للكتاب | 1007-5704 |
الملخص | An alternative proof of Lie’s approach for the linearization of scalar second-order ordinary differential equations is derived by using the relationship between λ-symmetries and first integrals. This relation further leads to a new λ-symmetry linearization criterion for second-order ordinary differential equations which provides a new approach for constructing the linearization transformations with lower complexity. The effectiveness of the approach is illustrated by obtaining the local linearization transformations for the linearizable nonlinear ordinary differential equations of the form y″+F1(x,y)y′+F(x,y)=0. Examples of linearizable nonlinear ordinary differential equations which are quadratic or cubic in the first derivative are also presented. |
راعي المشروع | This work was supported by the NRF of South Africa for research support through the grant with the Unique Grant No., 92857, 2014. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Lie’s linearization Second-order ordinary differential equations Point transformations λ-Symmetries |
النوع | Article |
الصفحات | 45-51 |
رقم العدد | 1-3 |
رقم المجلد | 26 |
ESSN | 1878-7274 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [740 items ]