Secure medical treatment with deep learning on embedded board
المؤلف | Abdaoui, Abderrazak |
المؤلف | Al-Ali, Abdulla |
المؤلف | Riahi, Ali |
المؤلف | Mohamed, Amr |
المؤلف | Du, Xiaojiang |
المؤلف | Guizani, Mohsen |
تاريخ الإتاحة | 2024-08-14T06:12:18Z |
تاريخ النشر | 2020 |
اسم المنشور | Energy Efficiency of Medical Devices and Healthcare Applications |
المصدر | Scopus |
الملخص | Deep brain stimulator is among several medical devices known by doctors and scientists for the treatment of movement disorders, such as Parkinson's disease, essential tremor, and dystonia. The security of these devices is the main concern for doctors and patients because any external attacker can introduce fake stimulation inside the human brain and then induce pain or even modify the emotional pattern of the patient. In this chapter, we design a complete prototype of an embedded system for the prediction of different attack patterns in deep brain stimulation (DBS) to mitigate intrusions to such critical devices. We propose the use of the deep-learning methodology to design a deep classifier, based on the dataset obtained from genuine measurements and attack patterns. We prove the robustness of the proposed device by emulating several random attacks on the stimulator. Results show that our system is 97% reliable to predict attacks. We also deploy the proposed system on a cloud and demonstrate the feasibility of detecting the attacks in real time. |
اللغة | en |
الناشر | Elsevier |
الموضوع | Attack pattern Brain stimulator vulnerability Deep learning Flask Security of deep brain stimulator Web application |
النوع | Book chapter |
الصفحات | 131-151 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]