• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification of citrus plant diseases using deep transfer learning

    Thumbnail
    View/Open
    TSP_CMC_19046.pdf (1.246Mb)
    Date
    2021
    Author
    Rehman, Muhammad Zia Ur
    Ahmed, Fawad
    Khan, Muhammad Attique
    Tariq, Usman
    Jamal, Sajjad Shaukat
    Ahmad, Jawad
    Hussain, Iqtadar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In recent years, the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits. This in turn has helped in improving the quality and production of vegetables and fruits. Citrus fruits are well known for their taste and nutritional values. They are one of the natural and well known sources of vitamin C and planted worldwide. There are several diseases which severely affect the quality and yield of citrus fruits. In this paper, a new deep learning based technique is proposed for citrus disease classification. Two different pre-trained deep learning models have been used in this work. To increase the size of the citrus dataset used in this paper, image augmentation techniques are used. Moreover, to improve the visual quality of images, hybrid contrast stretching has been adopted. In addition, transfer learning is used to retrain the pre-trained models and the feature set is enriched by using feature fusion. The fused feature set is optimized using a meta-heuristic algorithm, the Whale Optimization Algorithm (WOA). The selected features are used for the classification of six different diseases of citrus plants. The proposed technique attains a classification accuracy of 95.7% with superior results when compared with recent techniques.
    DOI/handle
    http://dx.doi.org/10.32604/cmc.2022.019046
    http://hdl.handle.net/10576/57743
    Collections
    • Mathematics, Statistics & Physics [‎789‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video