• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic simulation of lead(II) metal adsorption from water on activated carbons in a packed-bed column

    Thumbnail
    View/Open
    s13399-022-03079-8.pdf (1.635Mb)
    Date
    2024-04-01
    Author
    Hameed, Areeba
    Hameed, Bassim H.
    Almomani, Fares A.
    Usman, Muhammad
    Ba-Abbad, Muneer M.
    Khraisheh, Majeda
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this work, lead(II) adsorption on activated carbons, tire-derived activated carbon (TAC), and commercial activated carbon (CAC), in a packed-bed column, was simulated using the Aspen Adsorption® V11 flowsheet simulator. The simulator was used to model the fixed-bed adsorption column and to establish the breakthrough curves by varying the initial concentration of lead(II) ions (500 mg/L, 1000 mg/L, 2000 mg/L, and 3000 mg/L), the bed height (0.2 m, 0.3 m, 0.4 m, 0.5 m, and 0.6 m), and the flow rate (9.88 × 10−4 m3/s, 1.98 × 10−3 m3/s, 2.96 × 10−3 m3/s, 3.95 × 10−3 m3/s, and 4.94 × 10−3 m3/s), at constant temperature and pressure of 25 °C and 3 bar, respectively. At the optimum conditions of 500 mg/L lead(II) concentration, 0.6 m bed height, and 9.88 × 10−4 m3/s flow rate, the breakthrough times were 488 s and 23 s for TAC and CAC, respectively. Under the same conditions, the adsorption capacity obtained at t0.5 was 114.26 mg/g for TAC and 7.72 mg/g for CAC. The simulation results indicate the potential of TAC for the adsorption of lead(II) in comparison to CAC.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85188194825&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s13399-022-03079-8
    http://hdl.handle.net/10576/59009
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video