• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Opportunistic cooperation for infrastructure-to-relaying-vehicles over LTE-A networks

    View/Open
    Opportunistic_cooperation_for_infrastructure-to-relaying-vehicles_over_LTE-A_networks.pdf (257.5Kb)
    Date
    2013
    Author
    Feteiha, Mohamed F.
    Hassanein, Hossam S.
    Kubbar, Osama
    Metadata
    Show full item record
    Abstract
    We extend vehicular cooperation into downlink LTE-A networks in what we call Infrastructure-to-Relaying-Vehicles (I2RV) cooperation. In I2RV, vehicles are used as relaying terminals between eNodeB/BS and a receiving user equipment located or mounted on another traveling vehicle, for the aim of extending coverage, improving performance, and attaining distributed transmission. Initial works on cooperative vehicular communications build upon the assumption of flat and quasi-static fading channels, this can be justified only for narrowband systems in very slow traffic flows such as in rush-hours. In this paper, we consider highway traffic with high-speed mobility resulting in doubly-selective (i.e., time- and frequency-selective) channels. To overcome the performance degradation, we make use of precoded cooperative transmission accompanied with an opportunistic best-relay selection technique to extract the rich underlying multipath-Doppler-spatial diversity gains. Our performance analysis through pairwise error probability (PEP) derivation shows that, through proper precoding, the proposed system is able to extract maximum available diversity in time, frequency and space. Furthermore, we derive a closed-form expressions for the outage probability as a bench-mark for future analysis for the proposed scheme. Through numerical analysis, we demonstrate that significant coverage advantage by extending the transmission distance targeting a specific error rate and using the same transmitting power can be achieved.
    DOI/handle
    http://dx.doi.org/10.1109/ICC.2013.6655630
    http://hdl.handle.net/10576/59091
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video