• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems

    View/Open
    Bandwidth_and_power_allocation_for_two-way_relaying_in_overlay_cognitive_radio_systems.pdf (1.010Mb)
    Date
    2014
    Author
    Alsharoa, Ahmad
    Ghazzai, Hakim
    Yaacoub, Elias
    Alouini, Mohamed-Slim
    Metadata
    Show full item record
    Abstract
    In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In our framework, we propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as an amplify-and-forward two-way relays, they are used to support PUs to achieve their target data rates over the remaining bandwidth. More specifically, CUs acts as relays for the PUs and gain some spectrum as long as they respect a specific power budget and primary quality-of-service constraints. In this context, we first derive closed-form expressions for optimal transmit power allocated to PUs and CUs in order to maximize the cognitive objective. Then, we employ a strong optimization tool based on particle swarm optimization algorithm to find the optimal relay amplification gains and optimal cognitive released bandwidths as well. Our numerical results illustrate the performance of our proposed algorithm for different utility metrics and analyze the impact of some system parameters on the achieved performance.
    DOI/handle
    http://dx.doi.org/10.1109/GLOCOM.2014.7036925
    http://hdl.handle.net/10576/59445
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video