عرض بسيط للتسجيلة

المؤلفSoliman, Abdulrahman
المؤلفMohamed, Amr
المؤلفYaacoub, Elias
المؤلفNavkar, Nikhil V.
المؤلفErbad, Aiman
تاريخ الإتاحة2024-10-08T08:41:41Z
تاريخ النشر2023-05
اسم المنشورIEEE International Conference on Communications
المعرّفhttp://dx.doi.org/10.1109/ICC45041.2023.10279455
الاقتباسSoliman, A., Mohamed, A., Yaacoub, E., Navkar, N. V., & Erbad, A. (2023, May). Intelligent DRL-Based Adaptive Region of Interest for Delay-sensitive Telemedicine Applications. In ICC 2023-IEEE International Conference on Communications (pp. 2419-2424). IEEE.
الترقيم الدولي الموحد للكتاب 978-153867462-8
الرقم المعياري الدولي للكتاب1550-3607
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85178296032&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/59902
الملخصTelemedicine applications have recently received substantial potential and interest, especially after the COVID-19 pandemic. Remote experience will help people get their complex surgery done or transfer knowledge to local surgeons, without the need to travel abroad. Even with breakthrough improvements in internet speeds, the delay in video streaming is still a hurdle in telemedicine applications. This imposes using image compression and region of interest (ROI) techniques to reduce the data size and transmission needs. This paper proposes a Deep Reinforcement Learning (DRL) model that intelligently adapts the ROI size and non-ROI quality depending on the estimated throughput. The delay and structural similarity index measure (SSIM) comparison are used to assess the DRL model. The comparison findings and the practical application reveal that DRL is capable of reducing the delay by 13% and keeping the overall quality in an acceptable range. Since the latency has been significantly reduced, these findings are a valuable enhancement to telemedicine applications.
راعي المشروعThis work was supported by NPRP award (NPRP12S-0119-190006) from the Qatar National Research Fund (a member of The Qatar Foundation).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc. (IEEE)
الموضوعDeep Reinforcement Learning (DRL)
optimization
region of interest (ROI)
structural similarity index measure (SSIM)
Telemedicine
العنوانIntelligent DRL-Based Adaptive Region of Interest for Delay-Sensitive Telemedicine Applications
النوعConference Paper
الصفحات2419-2424
رقم المجلد2023-May
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة