Intelligent DRL-Based Adaptive Region of Interest for Delay-Sensitive Telemedicine Applications
Author | Soliman, Abdulrahman |
Author | Mohamed, Amr |
Author | Yaacoub, Elias |
Author | Navkar, Nikhil V. |
Author | Erbad, Aiman |
Available date | 2024-10-08T08:41:41Z |
Publication Date | 2023-05 |
Publication Name | IEEE International Conference on Communications |
Identifier | http://dx.doi.org/10.1109/ICC45041.2023.10279455 |
Citation | Soliman, A., Mohamed, A., Yaacoub, E., Navkar, N. V., & Erbad, A. (2023, May). Intelligent DRL-Based Adaptive Region of Interest for Delay-sensitive Telemedicine Applications. In ICC 2023-IEEE International Conference on Communications (pp. 2419-2424). IEEE. |
ISBN | 978-153867462-8 |
ISSN | 1550-3607 |
Abstract | Telemedicine applications have recently received substantial potential and interest, especially after the COVID-19 pandemic. Remote experience will help people get their complex surgery done or transfer knowledge to local surgeons, without the need to travel abroad. Even with breakthrough improvements in internet speeds, the delay in video streaming is still a hurdle in telemedicine applications. This imposes using image compression and region of interest (ROI) techniques to reduce the data size and transmission needs. This paper proposes a Deep Reinforcement Learning (DRL) model that intelligently adapts the ROI size and non-ROI quality depending on the estimated throughput. The delay and structural similarity index measure (SSIM) comparison are used to assess the DRL model. The comparison findings and the practical application reveal that DRL is capable of reducing the delay by 13% and keeping the overall quality in an acceptable range. Since the latency has been significantly reduced, these findings are a valuable enhancement to telemedicine applications. |
Sponsor | This work was supported by NPRP award (NPRP12S-0119-190006) from the Qatar National Research Fund (a member of The Qatar Foundation). |
Language | en |
Publisher | Institute of Electrical and Electronics Engineers Inc. (IEEE) |
Subject | Deep Reinforcement Learning (DRL) optimization region of interest (ROI) structural similarity index measure (SSIM) Telemedicine |
Type | Conference Paper |
Pagination | 2419-2424 |
Volume Number | 2023-May |
Files in this item
This item appears in the following Collection(s)
-
Computer Science & Engineering [2402 items ]