• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing Post-Disaster Survivor Detection Using UAV Imagery and Transfer Learning Strategies

    Thumbnail
    Date
    2024-01-01
    Author
    Ahmed, Nema
    Al-Maadeed, Somaya
    Metadata
    Show full item record
    Abstract
    In disaster response and search and rescue operations, the immediate detection of survivors remains a critical challenge. This research pioneers a novel approach to rapidly detect survivors in disaster areas using UAVs and advanced computer vision techniques. Leveraging the YOLOv8 object detection model, the study explores how synthetic and real disaster-specific datasets, alongside transfer learning, enhance survivor detection capabilities. Results show promising adaptability, with the YOLOv8 model achieving an average precision (AP) of 0.864, marking a significant 32% improvement over the previous state-of-the-art (SOTA) performance of 0.654 achieved with a slower model. Furthermore, the combination of fine-tuning a pre-trained model on the newly built dataset surpassed, by a small margin, even the standard training method despite utilizing only half the number of epochs. Additionally, this paper proposes a UAV-based system model that integrates computer vision for rapid onsite detection, potentially revolutionizing disaster response frameworks. This paper highlights the potential of UAV technology and transfer learning in improving disaster management and guides future investigations in this critical field.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200004380&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC61514.2024.10592327
    http://hdl.handle.net/10576/60048
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video