• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bluetooth-Based Vehicle Counting: Bridging the Gap to Ground-Truth With Machine Learning

    Thumbnail
    View/Open
    Bluetooth-Based_Vehicle_Counting_Bridging_the_Gap_to_Ground-Truth_With_Machine_Learning.pdf (1.898Mb)
    Date
    2023
    Author
    Tayeb, Fatima
    Chihaoui, Hamadi
    Filali, Fethi
    Metadata
    Show full item record
    Abstract
    Traffic flow, number of vehicles passing a particular point over a given period of time, is an essential indicator for evaluating the performance and condition of road networks, detecting congestion, and predicting traffic trends. Accurate and reliable measurement of traffic flow in urban roads is challenging due to the dynamic nature of intersection signals and comes with high equipment and maintenance cost. WaveTraf is a Bluetooth-based Intelligent Traffic System solution widely deployed in the State of Qatar which detects and monitors the movement of Bluetooth-enabled devices anonymously using their unique MAC addresses. Systems such as WaveTraf allow for real-time, low-cost, scalable and non-intrusive traffic flow measurement; however, they could suffer from low detection and sampling rates leading to uncertain and unreliable estimates. In this research, we investigate various machine learning techniques such as Random Forrest, Support Vector Regression Machines and XGBoost to model the relationship between the ground-truth traffic flow based on video cameras and Bluetooth-based traffic flow. We utilized these techniques to enhance the dependability of Bluetooth-based traffic flow measurements, making it a more desirable and cost-effective solution for real-time traffic flow measurement.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2023.3287981
    http://hdl.handle.net/10576/60217
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video