• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Addressing Data Sparsity with GANs for Multi-fault Diagnosing in Emerging Cellular Networks

    View/Open
    Addressing_Data_Sparsity_with_GANs_for_Multi-fault_Diagnosing_in_Emerging_Cellular_Networks.pdf (3.856Mb)
    Date
    2022
    Author
    Rizwan, A.
    Abu-Dayya, A.
    Filali, F.
    Imran, A.
    Metadata
    Show full item record
    Abstract
    Data-driven machine learning is considered a means to address the paramount challenge of timely fault diagnosis in modern and futuristic ultra-dense and highly complex mobile networks. Whereas diagnosing multiple faults in the network at the same time remains an open challenge. In this context, the data sparsity is hindering the potential of machine learning to address such issues. In this work, we have proposed a data augmentation scheme comprising Pix2Pix Generative Adversarial Network (GAN) and a customized loss function never used before, to address the data sparsity challenge in Minimization of Drive Tests (MDT) data. Our proposed unique augmentation scheme generates images of MDT coverage maps with Peak signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) values of 25 and 0.97 respectively, which are significantly higher than those achieved without our customized loss function. The performance of data augmentation scheme used is further evaluated with a Convolutional Neural Network (CNN) model for simultaneously detecting most commonly occurring network faults, such as antenna up-tilt, antenna down-tilt, transmission power degradation, and cell outage. The CNN applied on the data generated from the 1% of the MDT data with the proposed augmentation scheme has lead to a gain of 550% in the detection of all classes, including the four faults and cell with normal behavior, as compared to when it is applied on the data generated without our customized loss function.
    DOI/handle
    http://dx.doi.org/10.1109/ICAIIC54071.2022.9722696
    http://hdl.handle.net/10576/60227
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video