• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    6G Connectivity in Dense Indoor Environments using Beamforming and Frequency Allocation over IEEE 802.11ad

    View/Open
    6G_Connectivity_in_Dense_Indoor_Environments_using_Beamforming_and_Frequency_Allocation_over_IEEE_802.11ad.pdf (931.8Kb)
    Date
    2021-06
    Author
    Yaacoub, Elias
    Metadata
    Show full item record
    Abstract
    The upcoming 6G network is expected to support high data rate services combining the requirements of the 5G enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) use cases, typically called mobile broadband reliable low latency communication (MBR-LLC). In addition, a large proliferation of extended reality (XR) services, encompassing augmented, mixed, and virtual reality (AR/MR/VR), is expected. On the other hand, the IEEE 802.11ad standard uses millimeter wave (mmWave) communications to provide data rates up to 6.76 Gbps, and supports six channels. This paper investigates the use of IEEE 802.11ad for indoor environments with high density of users. To provide high data rates to each user and avoid collisions over a single channel, we propose the use of beamforming using massive antenna arrays, coupled with a frequency allocation scheme for IEEE 802.11ad. Simulation results show that the proposed approach leads to high rates with limited interference in an indoor environment.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112838399&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ICCWorkshops50388.2021.9473512
    http://hdl.handle.net/10576/60322
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video