• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the Placement of UAV Docking Stations for Future Intelligent Transportation Systems

    View/Open
    On_the_Placement_of_UAV_Docking_Stations_for_Future_Intelligent_Transportation_Systems.pdf (531.5Kb)
    Date
    2017
    Author
    Ghazzai, Hakim
    Menouar, Hamid
    Kadri, Abdullah
    Metadata
    Show full item record
    Abstract
    Unmanned Aerial Vehicles (UAV) have attracted a lot of attention in a variety of fields especially in intelligent transportation systems (ITS). They constitute an innovative mean to support existing technologies to control road traffic and monitor incidents. Due to their energy-limited capacity, UAVs are employed for temporary missions and, during idle periods, they are placed in stations where they can replenish their batteries. In this paper, the problem of UAV docking station placement for ITS is investigated. This constitutes the first step in managing UAV- assisted ITS. The objective is to determine the best locations for a given number of docking stations that the operator aims to install in a large geographical area. Based on average road network statistics, two essential conditions are imposed in making the placement decision: i) the UAV has to reach the incident location in a reasonable time, ii) there is no risk of UAV's battery failure during the mission. Two algorithms, namely a penalized weighted k-means algorithm and the particle swarm optimization algorithm, are proposed. Results show that both algorithms achieve close coverage efficiency in spite of their different conceptual constructions.
    DOI/handle
    http://dx.doi.org/10.1109/VTCSpring.2017.8108676
    http://hdl.handle.net/10576/60447
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video