عرض بسيط للتسجيلة

المؤلفAkkaya, Kemal
المؤلفGuvenc, Ismail
المؤلفAygun, Ramazan
المؤلفPala, Nezih
المؤلفKadri, Abdullah
تاريخ الإتاحة2025-01-02T10:57:58Z
تاريخ النشر2015-03
اسم المنشور2015 IEEE Wireless Communications and Networking Conference Workshops, WCNCW 2015
المعرّفhttp://dx.doi.org/10.1109/WCNCW.2015.7122529
الاقتباسAkkaya, K., Guvenc, I., Aygun, R., Pala, N., & Kadri, A. (2015, March). IoT-based occupancy monitoring techniques for energy-efficient smart buildings. In 2015 IEEE Wireless communications and networking conference workshops (WCNCW) (pp. 58-63). IEEE.
الترقيم الدولي الموحد للكتاب 978-1-4799-8760-3
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84938811184&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62073
الملخصWith the proliferation of Internet of Things (IoT) devices such as smartphones, sensors, cameras, and RFIDs, it is possible to collect massive amount of data for localization and tracking of people within commercial buildings. Enabled by such occupancy monitoring capabilities, there are extensive opportunities for improving the energy consumption of buildings via smart HVAC control. In this respect, the major challenges we envision are 1) to achieve occupancy monitoring in a minimally intrusive way, e.g., using the existing infrastructure in the buildings and not requiring installation of any apps in the users' smart devices, and 2) to develop effective data fusion techniques for improving occupancy monitoring accuracy using a multitude of sources. This paper surveys the existing works on occupancy monitoring and multi-modal data fusion techniques for smart commercial buildings. The goal is to lay down a framework for future research to exploit the spatio-temporal data obtained from one or more of various IoT devices such as temperature sensors, surveillance cameras, and RFID tags that may be already in use in the buildings. A comparative analysis of existing approaches and future predictions for research challenges are also provided.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc. (IEEE)
الموضوعBig data
Data fusion
Data mining
Energy efficiency
Hidden Markov model (HMM)
HVAC
Localization
Markov chain
Occupancy monitoring
Position estimation
Positioning
WiFi
Wireless location estimation
WLAN
العنوانIoT-based occupancy monitoring techniques for energy-efficient smart buildings
النوعConference
الصفحات58-63
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة