• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    UniBFS: A novel uniform-solution-driven binary feature selection algorithm for high-dimensional data

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2210650224002530-main.pdf (4.433Mb)
    التاريخ
    2024
    المؤلف
    Ahadzadeh, Behrouz
    Abdar, Moloud
    Foroumandi, Mahdieh
    Safara, Fatemeh
    Khosravi, Abbas
    García, Salvador
    Suganthan, Ponnuthurai Nagaratnam
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Feature selection (FS) is a crucial technique in machine learning and data mining, serving a variety of purposes such as simplifying model construction, facilitating knowledge discovery, improving computational efficiency, and reducing memory consumption. Despite its importance, the constantly increasing search space of high-dimensional datasets poses significant challenges to FS methods, including issues like the "curse of dimensionality," susceptibility to local optima, and high computational and memory costs. To overcome these challenges, a new FS algorithm named Uniform-solution-driven Binary Feature Selection (UniBFS) has been developed in this study. UniBFS exploits the inherent characteristic of binary algorithms-binary coding-to search the entire problem space for identifying relevant features while avoiding irrelevant ones. To improve the effectiveness and efficiency of the UniBFS algorithm, Redundant Features Elimination algorithm (RFE) is presented in this paper. RFE performs a local search in a very small subspace of the solutions obtained by UniBFS in different stages, and removes the redundant features which do not increase the classification accuracy. Moreover, the study proposes a hybrid algorithm that combines UniBFS with two filter-based FS methods, ReliefF and Fisher, to identify pertinent features during the global search phase. The proposed algorithms are evaluated on 30 high-dimensional datasets ranging from 2000 to 54676 dimensions, and their effectiveness and efficiency are compared with state-of-the-art techniques, demonstrating their superiority. 2024 The Author(s)
    DOI/handle
    http://dx.doi.org/10.1016/j.swevo.2024.101715
    http://hdl.handle.net/10576/62214
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video