• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Benchmark problems for large-scale constrained multi-objective optimization with baseline results

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2210650224000373-main.pdf (2.104Mb)
    Date
    2024
    Author
    Qiao, Kangjia
    Liang, Jing
    Yu, Kunjie
    Guo, Weifeng
    Yue, Caitong
    Qu, Boyang
    Suganthan, P.N.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The interests in evolutionary constrained multiobjective optimization are rapidly increasing during the past two decades. However, most related studies are limited to small-scale problems, despite the fact that many practical problems contain large-scale decision variables. Although several large-scale constrained multi-objective evolutionary algorithms (CMOEAs) have been developed, they are still tested on benchmarks that are designed for small-scale problems without the features of large-scale problems. To promote the research on large-scale constrained multi-objective optimization (LSCMO), this paper proposes a new LSCMO benchmark based on the design principles of large-scale multi-objective optimization and constrained multi-objective optimization. In this benchmark, more realistic features are considered, such as mixed linkages between constraint variables and unconstrained variables, imbalanced contributions of variables to the objectives, varying number constraint functions. Besides, to better solve the proposed benchmark, a bidirectional sampling strategy is proposed, where a convergence direction sampling and a diversity direction sampling are used to accelerate the convergence and maintain diversity respectively. Furthermore, the proposed bidirectional sampling strategy is embedded into an existing CMOEA to improve the search ability of algorithm in the large-scale search space with constraints. In experiments, the proposed algorithm is compared with several latest peer algorithms, and the results verify that the designed benchmark functions can effectively test the performance of algorithms and the proposed algorithm can better tackle the new benchmark. Finally, the proposed algorithm is used to solve the network structure control-based personalized drug target recognition problems with more than 2000 decision variables, and results show its superiority. 2024
    DOI/handle
    http://dx.doi.org/10.1016/j.swevo.2024.101504
    http://hdl.handle.net/10576/62220
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video