• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Knowledge-embedded constrained multiobjective evolutionary algorithm based on structural network control principles for personalized drug targets recognition in cancer

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    S0020025524009472.pdf (1.719Mb)
    Date
    2024
    Author
    Qiao, Kangjia
    Liang, Jing
    Guo, Wei-Feng
    Hu, Zhuo
    Yu, Kunjie
    Suganthan, P.N.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The structural network control principle for identifying personalized drug targets (SNCPDTs) is a kind of constrained multiobjective optimization (CMO) problem with NP-hard features, which makes traditional mathematical methods difficult to adopt. Therefore, this study designs a knowledge-embedded multitasking constrained multiobjective evolutionary algorithm (KMCEA) to solve the SNCPDTs by mining relevant knowledge. Specifically, the relationships between two optimization objectives (minimizing the number of driver nodes and maximizing prior-known drug-target information) and constraints (guaranteeing network control) are analyzed from the perspective of CMO. We find that two objectives are difficult to optimize; thus two single-objective auxiliary tasks are created to optimize two objectives respectively, so as to maintain diversity along the Pareto front. Furthermore, we find that two optimization objectives have a complex reverse relation and a simple positive relation with constraints, respectively; thus, a population initialization method and a local auxiliary task are designed for two single-objective auxiliary tasks, respectively, so as to improve the performance of the algorithm on two objective functions. Finally, KMCEA is used to solve two kinds of models with three kinds of datasets. Compared with various methods, KMCEA can not only effectively discover clinical combinatorial drugs but also better solve the SNCPDTs regarding convergence and diversity. 2024
    DOI/handle
    http://dx.doi.org/10.1016/j.ins.2024.121033
    http://hdl.handle.net/10576/62224
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video