• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Low-rank and global-representation-key-based attention for graph transformer

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S002002552300693X-main.pdf (1.441Mb)
    Date
    2023
    Author
    Lingping, Kong
    Ojha, Varun
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Snášel, Václav
    Metadata
    Show full item record
    Abstract
    Transformer architectures have been applied to graph-specific data such as protein structure and shopper lists, and they perform accurately on graph/node classification and prediction tasks. Researchers have proved that the attention matrix in Transformers has low-rank properties, and the self-attention plays a scoring role in the aggregation function of the Transformers. However, it can not solve the issues such as heterophily and over-smoothing. The low-rank properties and the limitations of Transformers inspire this work to propose a Global Representation (GR) based attention mechanism to alleviate the two heterophily and over-smoothing issues. First, this GRbased model integrates geometric information of the nodes of interest that conveys the structural properties of the graph. Unlike a typical Transformer where a node feature forms a Key, we propose to use GR to construct the Key, which discovers the relation between the nodes and the structural representation of the graph. Next, we present various compositions of GR emanating from nodes of interest and 𝛼-hop neighbors. Then, we explore this attention property with an extensive experimental test to assess the performance and the possible direction of improvements for future works. Additionally, we provide mathematical proof showing the efficient feature update in our proposed method. Finally, we verify and validate the performance of the model on eight benchmark datasets that show the effectiveness of the proposed method.
    DOI/handle
    http://dx.doi.org/10.1016/j.ins.2023.119108
    http://hdl.handle.net/10576/62227
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video