• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ensemble reinforcement learning: A survey

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    S1568494623009936.pdf (1.151Mb)
    Date
    2023
    Author
    Song, Yanjie
    Suganthan, Ponnuthurai Nagaratnam
    Pedrycz, Witold
    Ou, Junwei
    He, Yongming
    Chen, Yingwu
    Wu, Yutong
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Reinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific and applied problems. Despite its success, certain complex tasks remain challenging to be addressed solely with a single model and algorithm. In response, ensemble reinforcement learning (ERL), a promising approach that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity. ERL leverages multiple models or training algorithms to comprehensively explore the problem space and possesses strong generalization capabilities. In this study, we present a comprehensive survey on ERL to provide readers with an overview of recent advances and challenges in the field. Firstly, we provide an introduction to the background and motivation for ERL. Secondly, we conduct a detailed analysis of strategies such as model selection and combination that have been successfully implemented in ERL. Subsequently, we explore the application of ERL, summarize the datasets, and analyze the algorithms employed. Finally, we outline several open questions and discuss future research directions of ERL. By offering guidance for future scientific research and engineering applications, this survey significantly contributes to the advancement of ERL. 2023 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.asoc.2023.110975
    http://hdl.handle.net/10576/62234
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video