• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Online learning using deep random vector functional link network

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    S0952197623008606.pdf (1.450Mb)
    Date
    2023
    Author
    Sreenivasan, Shiva
    Hu, Minghui
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    Deep neural networks have shown their promise in recent years with their state-of-the-art results. Yet, backpropagation-based methods may suffer from time-consuming training process and catastrophic forgetting when performing online learning. In this work we attempt to curtail them by employing the ensemble deep Random Vector Functional Link (edRVFL). As opposed to backpropagation-based neural networks that adjust weights iteratively, RVFL uses a closed-form solution method without iterative parameter learning. In addition, our approach allows the model to grow incrementally as new data is made available so that it can more resemble real-life learning scenarios. Our proposed online learning models were able to perform better on 72% of the datasets in the classification scenario and 80% of the datasets in the regression scenario, when compared to other available randomization-based online learning models in the literature. This is further supported by statistical comparisons which also show the stability of our network. 2023 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.engappai.2023.106676
    http://hdl.handle.net/10576/62237
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video