• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Support Vector Machine Based Models with Sparse Auto-encoder Based Features for Classification Problem

    Thumbnail
    Date
    2023
    Author
    Malik, A. K.
    Ganaie, M. A.
    Tanveer, M.
    Suganthan, P. N.
    Metadata
    Show full item record
    Abstract
    Auto-encoder is a special type of artificial neural network (ANN) that is used to learn informative features from data. In the literature, the generalization performance of several machine learning models have been improved either using auto-encoder based features or high dimensional features (original + auto-encoder based features). Random vector functional link (RVFL) network also uses two type of features, i.e., original features and randomized features, that makes it a special randomized neural network. These hybrid features improve the generalization performance of the RVFL network. In this paper, we introduce the idea of using additional features into robust energy-based least squares twin support vector machines (RELS-TSVM) and least squares twin support vector machines (LSTSVM). We used sparse auto-encoder with L1 norm regularization to learn the auxiliary feature representation from original feature space. These new additional features are concatenated with the original features to get the extended feature space. The conventional RELS-TSVM and LSTSVM are trained over new extended feature space. Experiments demonstrate that auto-encoder based features improve the generalization capability of the conventional RELS-TSVM and LSTSVM models. To examine the performance of the proposed classifiers, i.e., extended-RELS-TSVM (ext-RELS-TSVM) and extended LSTSVM (ext-LSTSVM), experiments have been conducted over 15 UCI binary datasets and the results show that the proposed classifiers have better generalization performance than the baseline classifiers. 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-031-30105-6_21
    http://hdl.handle.net/10576/62247
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video