عرض بسيط للتسجيلة

المؤلفLiang, Jing
المؤلفLin, Hongyu
المؤلفYue, Caitong
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفWang, Yaonan
تاريخ الإتاحة2025-01-20T05:12:01Z
تاريخ النشر2024
اسم المنشورIEEE/CAA Journal of Automatica Sinica
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/JAS.2024.124377
الرقم المعياري الدولي للكتاب23299266
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62249
الملخصIn multimodal multiobjective optimization problems (MMOPs), there are several Pareto optimal solutions corresponding to the identical objective vector. This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables. Due to the increase in the dimensions of decision variables in real-world MMOPs, it is difficult for current multimodal multiobjective optimization evolutionary algorithms (MMOEAs) to find multiple Pareto optimal solutions. The proposed algorithm adopts a dual-population framework and an improved environmental selection method. It utilizes a convergence archive to help the first population improve the quality of solutions. The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population. The combination of these two strategies helps to effectively balance and enhance convergence and diversity performance. In addition, to study the performance of the proposed algorithm, a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed. The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.
راعي المشروعThis work was supported in part by National Natural Science Foundation of China (62106230, U23A20340, 62376253, 62176238), China Postdoctoral Science Foundation (2023M743185), and Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications Open Fundation (BDIC-2023-A-007).
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعBenchmark functions
diversity measure
evolutionary algorithms
multimodal multiobjective optimization
العنوانMultiobjective Differential Evolution for Higher-Dimensional Multimodal Multiobjective Optimization
النوعArticle
الصفحات1458-1475
رقم العدد6
رقم المجلد11
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة