عرض بسيط للتسجيلة

المؤلفChen, Jiaying
المؤلفWu, Keyu
المؤلفHu, Minghui
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفMakur, Anamitra
تاريخ الإتاحة2025-01-20T05:12:02Z
تاريخ النشر2024
اسم المنشورIEEE Transactions on Vehicular Technology
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TVT.2024.3405483
الرقم المعياري الدولي للكتاب189545
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62258
الملخصAutonomous exploration in expansive and complicated environments poses a significant challenge. When the dimensions of the environment expand, exploration algorithms encounter substantial overhead, which can overpower the computational capacity of mobile platforms. In this paper, we propose a novel 3D LiDAR-based end-to-end autonomous exploration network architecture, which allows mobile robots to learn to explore autonomously in expansive environments through deep reinforcement learning. Specifically, we utilize both scans from the LiDAR sensor and maps obtained by SLAM as exploration information to predict the robot's linear and angular actions simultaneously. Furthermore, in order to enhance exploration capability, intrinsic rewards are also used during training. Compared to the existing methods, our proposed approach demonstrates improved learning efficiency and adaptability for various environments. Moreover, the proposed method can complete exploration in unknown environments with a shorter trajectory length than state-of-the-art methods. Additionally, experiments are conducted on the physical robot. which indicates that the trained network can be seamlessly transferred from the simulation to the real world.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAutomatic exploration
Collision avoidance
Collision avoidance
Deep reinforcement learning
Laser radar
LiDAR Active SLAM
Navigation
Robot sensing systems
Robots
Simultaneous localization and mapping
Streams
العنوانLiDAR-Based End-to-End Active SLAM Using Deep Reinforcement Learning in Large-Scale Environments
النوعArticle
الصفحات1-14
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة