عرض بسيط للتسجيلة

المؤلفQiao, Zhongzheng
المؤلفHu, Minghui
المؤلفJiang, Xudong
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفSavitha, Ramasamy
تاريخ الإتاحة2025-01-20T05:12:03Z
تاريخ النشر2023
اسم المنشورICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ICASSP49357.2023.10094960
الرقم المعياري الدولي للكتاب15206149
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62269
الملخصClass-incremental learning (CIL) on multivariate time series (MTS) is an important yet understudied problem. Based on practical privacy-sensitive circumstances, we propose a novel distillation-based strategy using a single-headed classifier without saving historical samples. We propose to exploit Soft-Dynamic Time Warping (Soft-DTW) for knowledge distillation, which aligns the feature maps along the temporal dimension before calculating the discrepancy. Compared with Euclidean distance, Soft-DTW shows its advantages in overcoming catastrophic forgetting and balancing the stability-plasticity dilemma. We construct two novel MTS-CIL benchmarks for comprehensive experiments. Combined with a prototype augmentation strategy, our framework demonstrates significant superiority over other prominent exemplar-free algorithms.
راعي المشروعThis research is part of the programme DesCartes and is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعContinual Learning
Dynamic Time Warping
Knowledge Distillation
Multivariate time series classification
العنوانClass-Incremental Learning on Multivariate Time Series Via Shape-Aligned Temporal Distillation
النوعConference
الصفحات1-5
رقم المجلد2023-June
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة