Class-Incremental Learning on Multivariate Time Series Via Shape-Aligned Temporal Distillation
المؤلف | Qiao, Zhongzheng |
المؤلف | Hu, Minghui |
المؤلف | Jiang, Xudong |
المؤلف | Suganthan, Ponnuthurai Nagaratnam |
المؤلف | Savitha, Ramasamy |
تاريخ الإتاحة | 2025-01-20T05:12:03Z |
تاريخ النشر | 2023 |
اسم المنشور | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/ICASSP49357.2023.10094960 |
الرقم المعياري الدولي للكتاب | 15206149 |
الملخص | Class-incremental learning (CIL) on multivariate time series (MTS) is an important yet understudied problem. Based on practical privacy-sensitive circumstances, we propose a novel distillation-based strategy using a single-headed classifier without saving historical samples. We propose to exploit Soft-Dynamic Time Warping (Soft-DTW) for knowledge distillation, which aligns the feature maps along the temporal dimension before calculating the discrepancy. Compared with Euclidean distance, Soft-DTW shows its advantages in overcoming catastrophic forgetting and balancing the stability-plasticity dilemma. We construct two novel MTS-CIL benchmarks for comprehensive experiments. Combined with a prototype augmentation strategy, our framework demonstrates significant superiority over other prominent exemplar-free algorithms. |
راعي المشروع | This research is part of the programme DesCartes and is supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Continual Learning Dynamic Time Warping Knowledge Distillation Multivariate time series classification |
النوع | Conference |
الصفحات | 1-5 |
رقم المجلد | 2023-June |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الشبكات وخدمات البنية التحتية للمعلومات والبيانات [142 items ]