عرض بسيط للتسجيلة

المؤلفLi, Ruilin
المؤلفGao, Ruobin
المؤلفCui, Jian
المؤلفSuganthan, P.N.
المؤلفSourina, Olga
تاريخ الإتاحة2025-01-20T05:12:03Z
تاريخ النشر2022
اسم المنشورProceedings of the 2022 IEEE Symposium Series on Computational Intelligence, SSCI 2022
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/SSCI51031.2022.10022019
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62275
الملخصSituation awareness (SA) plays a significant role in takeover transitions from autonomous to manual driving. Previous researchers have shown that eye movement signals can be used for SA recognition. Moreover, ensemble deep random vector functional link (edRVFL) has demonstrated its superiority in different applications. Therefore, this work proposes an advanced edRVFL (AedRVFL) to perform eye-tracking (ET)-based SA recognition, including improvements in two aspects. Specifically, pruning in the direct links is implemented to improve the efficiency of linear features. Then, a weighting method based upon the regression errors of samples is developed. The experiment was conducted on a public conditionally automated driving dataset. Results showed that the proposed AedRVFL out-performed the baseline methods, demonstrating the effectiveness of using AedRVFL for ET-based SA recognition. Ablation studies were conducted to validate the improvements in the edRVFL.
راعي المشروعThis research is supported by funding from Singapore Maritime Institute.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعConditionally automated driving
ensemble deep random vector functional link (edRVFL)
eye-tracking (ET)
pruning
situation awareness (SA)
weighting
العنوانAdvanced Ensemble Deep Random Vector Functional Link for Eye-Tracking-based Situation Awareness Recognition
النوعConference
الصفحات300-307
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة